Scientia

Interdisciplinary Studies in Computer Science
17(2):75-87, July/December 2006

©2006 by Unisinos

INTERGIs - A proposal of an architecture for the integration of
identity management systems

Fabio Raphael Sobiecki de Sales?, Adilson Eduardo Guelfi?, Volnys Borges Bernal®

I'Novell do Brasil Software Ltda.
ZIP CODE 04551-060 — Sao Paulo — SP

2Departamento de Engenharia Eletronica, Escola Politécnica
Universidade de Sao Paulo — ZIP CODE 05508-900 — Sao Paulo — SP

fsales@gmail.com,

Abstract

guelfi@lsi.usp.br,

volnys@lsi.usp.br

The goal of this work is to propose an integration architecture that deals with different Identity
Management Systems. Using a flexible creation rule, each database administrator will be able to
define the level of integration in which the programs of a company will work using another
company’s user database. Beyond this main function, this architecture will be able to assist the
authentication and access control configuration of local programs. The architecture has an
administration web interface, where it is possible to manage programs that use the integration
data. The integration architecture, called interGIs, has flexibility, compatibility, performance and
safety in integration among different identity management systems.

KEYWORDS: identity management, authentication, authorization, integration.

1 Introduction

Now, companies have been spending time and
resources in identity management technologies due to laws
or Information Technology security requirements. In order
to attend this demand, technology companies developed
Identity Management systems (IdM).

Digital Identity has the same function of the identity
documents, to identify people by documents issued by
governmental offices. These documents have information
about the person, like: Name, Parent’s Name, Photo and
Finger Print. The Digital Identity is an electronic method to
identify a user through a reliable information system and
then to determine his access level.

IdM’s are responsible for managing and storing
identities. Under an IdM, it is possible to authenticate, to
authorize and to audit user accesses.

Blum (2005) defines identity management in the
following way:

“Identity Management is a set of process and
supporting infrastructure for the creation, maintenance and
use of digital identities.”

This administrative approach has a good acceptance
in daily use because, with IdM, the network administrator
can create only one user, and each company program that

needs authentication can go directly to this system and
validate the user’s credentials.

With IdM evolution, new functionalities appeared,
however, the most important one is the User Authorization
to programs. This functionality is important because it gives
access to the process, and it is more secure when it is
executed in a centralized tool.

The use of LDAP — Lightweight Directory Access
Protocol (Wahl et al., 1997) is common in IdM
implementations. LDAP is a hierarchical database and a
set of protocols and data manipulation commands by
network. This technology is in accordance with RFC 2251
(Wabhl et al., 1997). But this directory can be used by only
one user administrative domain.

Nowadays, the integration between two domains is
the main challenge for LDAP technology. For example:
when two companies merged, a specific user may want to
use programs from his native company and from the new
company. This task is complex and has high security risk,
because any mistake can result in an unauthorized access
to confidential information.

The goal of this paper is to develop integration
architecture among IdMs so that programs can authenticate
and authorize users from any database in a transparent
way.

76 INTERGIS - A PROPOSAL OF AN ARCHITECTURE FOR THE INTEGRATION OF IDENTITY MANAGEMENT SYSTEMS

This paper is organized as following: section II
presents a discussion about related works that deal with
remote authentication and authorization. After that, in
section III, we present the prior concepts on: architecture,
requirements, components and function. In section IV, a
study of scenarios is presented to show examples of how
this integration is used. Section V describes some features
of integration server related to management, event logs
and security issues. Conclusions about this work are
presented in section VI.

2 Related Works

Silvestre and Rodriguez (2005) describe a domain
integration module, based on the authentication tickets
and role base access control defined on source domain,
like presented on Shibboleth Model (Carmody, 2001).

In accordance with this work, the user can be
authenticated in a source LDAP server, and this LDAP
server issues a ticket that contains the user role. This
ticket is digitally signed and the signature will be verified
by the destination LDAP. Based on the role issued by the
source LDAP server, the access levels are defined to the
local programs.

‘We can point out, in this work, the use of role base
access to define access levels to a remote user in a local
program. It is a quick way to identify an access level
because system administrators won’t need to configure
long and complex access control lists.

But this work doesn’t inform in which way the
program can communicate with the source LDAP server
in a secure way. By default, LDAP transfers data in clear
text. Other relevant factor is that both companies need to
have equal role definitions or, at least, equivalent roles so
that the local system can understand the access level
defined to a remote user. It isn’t clear the method where
roles are matched.

In our work, the identity is always authenticated
in the source base. Only XML (eXtensible Markup
Language) documents are transferred by secure channels.
The integration rule system is dynamic, and allows
administrators to establish search filters that identify
authorized users.

Jones (2006) describes a web authentication
solution based on information cards and an integration
system for different authentication and control
technologies.

These information cards are like digital
certificates, but store data and a specific cryptographic
key pair for session control and authentication between
the user and the program. Data stored in the information
card is exclusive about the card owner, like address,

Volume 17 « n° 2 « July/December 2006

birth date, membership number, position and
department.

This is a metasystem that authenticate users using
several technologies, such as: Kerberos, Liberty, X.509 or
SAML. Beyond this interface with client, the metasystem
is based on the Web Services technology. Programs
consume client authentications through this Web Service.

Authentication is also treated in a different way. In
order to prevent phishing scam attacks, both site and user
authenticate each other. These authentications use the
information cards that contain specific data and a unique
cryptographic key pair of the involved parts. With this
cryptographic key pair, the authentication will execute only
in the allowed site by the information card and other site
cannot reuse the same card.

The importance of this work is site-to-user and user-
to-site authentications based on the information card.
Resources threatened by attacks like user/password are
not used anymore. Moreover, the user feels more secure
because can trust in the site that authenticates itself.

Information cards can also provide data related to
subject, being it the user or the host. In the case of hosts,
host attributes can be loaded into the card through
extensions. For example, a specific host extension
contained in an information card could be a bitmap image
that would be showed to the user whenever it requests
access to the host.

The author’s approach in this work is specific for
web sites. Moreover, this work neither presents the
concepts of federation or authentication domain
integration nor a point where the administrator can
configure access rules for a specific user.

In our work, we want to achieve an architecture
that is compatible with the present most used programming
languages. Moreover, we want to provide a service that
can be used by web and client/server programs, hardware
and other devices that are requested to be network
compatible. The use of digital certificates for authentication
can be applied, but this is an administrator’s decision.

Santin et al. (2002) have developed a work that
applies the concept of distributed public keys, SDSI/SPKI
(Lampson and Rivest, 1996; Ellison ez al., 1999), to establish
reliable networks among the provided services.

Through this concept, the user bank belongs to
bank customer federation (BCF). A credit card company
has a credit card customer federation (CCCF). Between
these two federations, a reliable relationship is established.

After that, the entity responsible for BCF will
choose an administrator, who will issue nominal certificates
to identify its customers, like a Certificate Authority in
X.509 standard. The administrator in a SDSI/SPKI
specification is responsible for determining and issuing
authorization certificates as described in Table 1.

FABIO RAPHAEL SOBIECKI DE SALES, ADILSON EDUARDO GUELFI, VOLNYS BORGES BERNAL 77

In this way, CCCF another principal will establish
and issue name certificates to deliverable services by credit
card companies.

In Table 2, we can see the name of the certificate
structure with its attributes and its descriptions.

Applying the concept of Network Federation, an
electronic commerce company could be considered reliable
by its electronic commerce federation (ECF) before the credit
card federation. Then, a bank customer, from BCF, can
access ECF that supports the electronic commerce
functions, by a mutual reliable relationship with CCCF.

For a bank customer to authenticate and to use credit
card services, the BCF administrator provides an
authorization certificate that lists the rights that has been
given by the BCF administrator.

The authentication is done through digital
signatures that give validity through the public key issuer
transmitted by the reliable network. Authorizations are
given validity in two phases. At the first phase, customer
signs digitally an operation request, and sends it by the
reliable way that allows customer to carry out that operation.

The server gives validity to the authorization
certificate through a reliable network and issues a single
certificate to the customer. It contains the authorization
which was delegated to it by the reliable network. Every
time the customer requires the same operation again, it
should present this certificate.

At the second phase, the authorization policies are
local or a result from administrator’s concession through a
reliable network.

The server’s guardian, a service located in the
principal, compares the trusted path provided by the
customer with the authorization policy and then it decides
for giving access or not to the user.

The use of SDSI/SPKI is interesting in the
identification process, because it is a secure method for

Table 1. Authorization certificate structure.

authentication. Reliable networks allow a dynamic form of
authorization well applied in environments like Internet,
where there are a lot of people and it is not possible to
analyze case-by-case. Internet users can also be separated
into very big groups, what makes the use of reliable
networks easier.

Our work has a more granular approach, in which
rules can be defined by a user, by a user profile or by a
great user group. Our work also has focus on the program
in limited environments, in which the administrator needs
to justify each integration.

About authentication, our work aims to use various
authentication technologies, like user/password pair and
the use of multifactor authentication as certificates or
biometric.

3 Integration Architecture between
Identity Management (INTERGIS)

InterGIs architecture has as its main goal, the secure
integration between distinguished IdM.

With InterGls, users originated from a company can
authenticate and use programs of another company, using
same identity credentials from their original IdM, in a
transparent way to users and to programs.

A—-REQUIREMENTS

The following requirements were not considered to
build this architecture:

* Transparent integration;

* Programming language compatibility;

e Secure communication;

* Integrity data;

* Flexibility in integration rules.

Transparent integration demands the creation of
an architecture that can be used in a live environment. We

Attributes Description

Issuer Public Key Issuer

Subject Public Key or administrator name that receive authorization

Delegation Logic value to authorize the propagation provided by the administrator
Authorization Permission provided by the issuer

Validity Validity in a date and time format

Table 2. Name certificate structure.

Attributes Description

Issuer Issuer Public Key (principal)

Name Local user name

Subject A public key or name to be referenced
Validity Validity in a date and time format

Scientia — Interdisciplinary Studies in Computer Science

78 INTERGIS - A PROPOSAL OF AN ARCHITECTURE FOR THE INTEGRATION OF IDENTITY MANAGEMENT SYSTEMS

cannot make big changes in the environment by re-
implementation, in order to prevent the legacy systems
from running correctly. Integration will have to be the least
intrusive in the environment at the implementation time.

When program authenticates a user, company “A”
or “B”, the authentication engine with InterGIs integration,
will be the same for any user, without other service to
authenticate foreign users.

InterGIs will need to communicate with many
different programs. Therefore, it must be compatible with
the main development technologies, like: Java and .Net.

It will need to interact with some programs and databases
to exchange information. All this communication must be safe
to grant that a person or equipment does not obtain privileged
information about authentications and authorizations.

Data integrity is a requisite, which demands
guarantee and the received information from any users or
InterGIs sources have to be really complete and
trustworthy. If there isn’t an integrity control, an attacker
can manipulate information to achieve restricted privileges.

When two companies merge, there are planned
conditions or business rules for the integration. For example:
Company “Bravo’s” users will be able to use only Human
Resources program of “Alfa” company’s, and “Alfa” company’s
users will be able to have access, with administrator privileges,
to any program of “Bravo” company’s.

In one another integration rule example: “Alfa”
company users and “Bravo” company users, who are
member of “Auditors” group, will have view access in
accounting program of “Alfa” company, until a date
previously defined, like on final date of auditors contract.

During the InterGlIs architecture introduction, the
IdM administrator will be able to specify flexible rules as
the ones above, so that at the moment of authentication or
integration, the rule takes over.

At this moment, each IdM administrator will determine
the users’ access level an integrated company will have on its
own domain. Integration will do not have to guarantee
complete access between the parts, unless it is granted by
each company administrator. For example: after an integration,
the administrator of “Alfa” company determined that all users
of “Bravo” company, who belong to Purchase department,
will have access to a specific program. But this configuration
made by “Alfa” administrator will run only when “Bravo”
administrator allows this query in “Bravo” user database, and
then users will be able to use the program at “Alfa” company.

With these requirements, we purpose the following
architecture.

B—-ARCHITECTURE

For this architecture, we suggest a division in four
modules, which will do the Integration Server: Program,
Engine, Data Source and Connections.

Volume 17 « n° 2 « July/December 2006

The PROGRAM module is responsible for the
communication between server and programs that will use
the services. These programs can be: ERP Systems, CRM
Systems, electronic turnstiles, electronic door locks, proxy
servers, printers, and VPN services.

The ENGINE module, manages process requests
from programs to IdMs. It stores the integration rules for
each integrated program to each IdM available. For each
new authentication request and access validation the
Engine module will perform a test on the configured rules
and generate a positive or negative reply about this request.

DATA SOURCE is a module responsible for the
communication between the integration servers and each
local IdM. When the Engine module needs to query an
IdM, it will request it to the Data Source module and this
module will query IdM directly, replying to the Engine.

When the Engine module checks if the
authentication request is from a foreign user, it forwards
the request to the CONNECTION module responsible for
the remote server integration. The module, then, sends the
request to other integration server to be processed.

Figure 1 shows the components position in the
server and the interaction of these modules with the external
environment.

The integration server is represented by all the
servers that store the four modules.

To establish a communication channel between two
IdMs, this work purposes a dynamic integration model,
using Web Services technology and secure communication
protocol to SOA.

SOA (Services Oriented Architecture) is an
architectural style to system development that the main
objective is to exchange services through simple coupling
between components. A unit is called service provider and
the other part consumer of these services (He, 2003).

X 3| system

l Server

Application

Engine

~Data Source

A
Company B
remote

Figure 1. Server components.

FABIO RAPHAEL SOBIECKI DE SALES, ADILSON EDUARDO GUELFI, VOLNYS BORGES BERNAL 79

This simple coupling, supplied by SOA, is the
decisive point to choose this technology. It becomes
compatible with existing programs and with new ones,
because the majority of the development softwares are
compatible with SOA protocol.

The Web Services use SOA to offer services by
interoperability standard between different programs
running under different platforms and servers (W3C, 2006a).

The option for Web Services as information provider
is because the fact that web services are compatible with
integration through Internet. It is a technology that has
cryptography features for data confidentially. This feature
reduces the development of the InterGIs architecture.

Integration server will establish a secure
communication between IdM and many programs, through
the exchange of XML documents, available in a network
service.

XML is a language in flexible text format derived
from SGML (ISO 8879). It was originally developed to
solve problems of electronic publication in large scale
(W3C,2006b).

BI-APPLICATION MODULE

The main Application module function (item 2 of
Figure 1) is to be a channel to programs that will consume
data (item 1 of Figure 1). Therefore, it must be compatible
with many technologies of hardware and software. Web
Services are considered because the way these technologies
are able to receive external requests by a server TCP port.
The protocol that will be used in this communication is HTTPS
to grant the data confidentiality.

A Human Resources (HR) program, which wants
to authenticate a user and to authorize it, at a first moment,
will collect information about the login name and the user
password. After, that program generates an XML
document.

After that, HR system requests access to the server
through Web Services, where a service is waiting for
connections. When connected, it sends the generated
Authentication Request XML document.

The Application module, then, will perform a syntax
validation on the XML document received. After that, it

01 <xml>

02 <doctype name="authreqg">

03 <id>id</id>

04 <time>dd/mm/yyyy hh:mm:ss</time>
05 </doctype>

06 <program>program</program>

07 <user>login</user>

08 <password>password</password>

09 <module>module</module>

10 <xml>

Figure 2. Authentication Request syntax document.

will interpret the document in order to get the necessary
information and also process the request.

In order to process the order, the Application
module will redirect the authentication process to the
Engine module.

The reply from the Engine module to the
Application module will result in a generation of a reply
XML document to the HR program. This reply also keeps
the syntax constant, as showed in Figure 3.

The administrator server can, if he wants, use a
digital signature for each XML document exchanged
between the program and the server. However, before it is
configured, each Integration Server needs to trust on
Certification Authority that issued certificates.

This option of digital signature significantly
increases the security, therefore, it prevents spoofing
attacks.

B1I-DATA SOURCE MODULE

This module is responsible for the connections
between the server and the data source (item 4 of Figure
1) that will provide authentication information. The reason
for a specific module to perform this task is because each
connection is specific to only one database and its
implementation must be more optimized for this function.

Only Engine module can request queries to a Data
Source. Each Data Source configuration will have a name
(line 3, Figure 4) and the same name will be used in the
integration rules document.

A main configuration must be informed (line 4,
Figure 4). It has to be a LDAP data source with read and
write rights. This main data source will be used to store
rules of other data sources, programs connections and
other related data that each server can run.

We can see, in Figure 4, the data source
configuration syntax document.

BIII- CONNECTION MODULE

This module is responsible for the connection
between the integration servers and for integration
between companies, which are the goal of this work (item
6 of Figure 1).

01 <xml>

02 <doctype name="authrep">

03 <id>id_of_request</id>

04 <time>dd/mm/yyyy hh:mm:ss</time>

05 </doctype>

06 <program>program</program>

07 <messagecode>result_code</messagecode>
08 <message>result_description</message>

09 <module name="module" value="0[1"/>
10 <xml>

Figure 3. Authentication Reply syntax.

Scientia — Interdisciplinary Studies in Computer Science

80 INTERGIS - A PROPOSAL OF AN ARCHITECTURE FOR THE INTEGRATION OF IDENTITY MANAGEMENT SYSTEMS

01 <xml>

02 <doctype name="source">

03 <source name="datasource">

04 <main/>

05 <type>ldap</type>

06 <host>server_dns_name</host>
07 <port>tcp_port</port>

08 <user>administrative_account_login</user>
09 <password>password</password>
10 </source>

11 </doctype>

12 <xml>

Figure 4. Data Source configuration syntax.

01 <xml>

02 <doctype name="exchange">

03 <domain>foreign_domain</domain>
04 <host>server_dns_name</host>

05 <port>port</port>

06 <trustedroot>ssl_certificate</trustedroot>
07 </doctype>

08 <program name="program">

09 <rule name="module" type="ldap">
10 ldap filter

11 </rule>

12 </program>

13 <xml>

Figure 5. Connection configuration syntax between servers.

It will receive authentication solicitations from the
Engine module, only from foreign users, identified by
foreign domain.

The reliable domains are configured in the program
rule (line 6, Figure 6). Each reliable domain must have a
corresponding configuration in the connection module
(line 3, Figure 5).

When the Engine module sends a request, the
Connection module transfers the entire document to “Bravo”
company’s server. The server of company “Bravo’s”
receives the file by “Bravo’s” Connection module.

Therefore, “Bravo’s” server must have a program
rule, similar to Figure 6, so that “Bravo” server can process
requests coming from “Alfa” server.

Before executing the program rule in “Bravo”
server, it will give validation to the program rule (lines 14-
16, Figure 6) with the configuration of “Alfa” server (lines
8-12, Figure 5).

If there is an inconsistency between this
information, the processing is interrupted and an error
message is generated.

After “Bravo’s” server processes the entire
request, the reply of this process returns to the Connection
module of “Alfa’s” server.

The Connection module returns the entire reply to
the Engine module that has already kept a session in
progress waiting for the reply. In this way, the local program
has only one point of authentication. It is a function for

Volume 17 « n° 2 « July/December 2006

local and remote administrators to allow authentication
and authorization.

The Figure 5 shows the connection configuration
syntax.

B1V—-ENGINE MODULE

It is the main module of the server the responsible
for the integration and the processing of authentication
solicitations (item 3 of Figure 1).

Based on integration rules, it interprets the request
sent by the Program module and its queries to [dM through
the Data Source module (item 4 of Figure 1).

When it identifies a foreign user, users that do not
belong to the local connected IdM, it redirects the program
request from Program module to Connection module (item
6 of Figure 1) after a validation rule that verifies if this
operation is permitted. When it receives the reply from
the Connection module, it redirects the reply to the
Program module without modifications.

The administrator will previously build rules of
integration for each program. For example: a human
resource program of “Alfa” company that authenticates
users in the IdM of “Alfa” company and in the IdM of
“Bravo” company.

Figure 6 shows the syntax file for a program to
connect on data source trough Intregration Server.

The validation of integration rules runs in the
following order:

FABIO RAPHAEL SOBIECKI DE SALES, ADILSON EDUARDO GUELFI,

01 <xml>

02 <doctype name="channel">

03 <appl>program</appl>

04 </doctype>

05 <domain>

06 <name>domain</name>

07 <source>data_source</source>

08 <requirements>user</requirements>
09 <requirements>password</requirements>
10 <sourceparam name="data_source">
11 <base>ldapbase</base>

12 <scope>one | sub</scope>

13 </sourceparam>

14 <rule name="module" type="ldap">
15 ldapfilter

16 </rule>

17 </domain>

18 <xml>

Figure 6. Syntax of the rules for a application.

a)

b)

<)

d)

It verifies if a rule for a program that is requesting
authentication exists. This verification uses
information contained in XML data of the
authentication request. Tag <program> of the
request (line 6, Figure 2) must have the same name
of the tag <appl> in rule (line 3, Figure 6). If it
does not exist, an error message is sent back to
the Program module. If the rules exist, they are
used to process the request.

It verifies if authentication is local or remote,
analyzing the tag <user> of the request (line 7,
Figure 2). If adomain is different from the specified
standard domain, the request is classified as
remote; in another case or if it is omitted, a local
authentication is assumed. In the remote case,
XML request is delivered to the Connection
module to be processed in another integration
server. Otherwise, if user belongs to the local IdM,
the rule is processed with the next step.

It verifies if the minimum requirements for
authentication have been informed. At the top
of XML rule are minimum requirements for the
authentication (lines 8 and 9, Figure 6). If there
is a compatible rule for a user, like password
and email, the Engine module will verify if the
authentication request contain these
information. Otherwise, an error message will
be sent back to the Program module. If all
requirements are presented, the module will
follow to the next step.

It verifies if the user exists. The module will
identify in the Engine program rule, which data
source is used to verify the authentication of
the program (line 7, Figure 6), for that specific
domain (line 6, Figure 6). After this, the Engine
module will request data from the Data Source,

e)

VOLNYS BORGES BERNAL 81

querying if the user informed in the request
(line 7, Figure 2) exists and what is the
Distinguished Name (DN) for him. DN is the
“full name” of object in the LDAP base. This
full name verification is necessary to correctly
authenticate the user through a LDAP
connection. If the query could not obtain a
user with the specified login, an error message
will be sent back to the Program module.

It authenticates the user in the database. The
next step, if user exists, is to give validation
to the provided password (line 8, Figure 2).
The second request sent to the Data Source
module, asks for the user authentication
using the DN and the password provided by
the Application module. Some LDAP server
can demand other parameters to authenticate
user like search base, search scope. In the
IdMs based in a relational database, the
information as database name and tables are
necessary. This information will consist of
the configuration of the rules (lines 10 - 13,
Figure 6).

If step “D” results in more than one DN, all the
DN’s will be given validation and only one
positive result will be received. If more than a
DN gets positive authentication or in the case
of none of the DN’s gets success, a message of
Program error will be sent to the module.

The authorization will be verified. The
authorization verification is optional. The
developer of the program can choose to verify
the user access or not verify it through the
server. In small programs that all the users have
the same rights, the authorization is something
unnecessary. However, in a big program that
has many access levels, the validation of
authorization through the server is an item
recommended for security reasons.

When the developer sends a XML message,
informing tags <module> (line 9, Figure 2), it
will use an existing module name in the
program rule (line 14, Figure 6). The Engine
module, then, will look inside the Engine
program rule for which requirements the user
must fulfill in order to be given validation in
the authorization (line 15, Figure 6). For
example: in order to have access to the
“Financial” module, the user needs to belong
to the group called “accounting”.

After verifying the necessity of user, the
Engine will direct a third query to the Data
Source module, to verify if the user fulfills the

Scientia — Interdisciplinary Studies in Computer Science

82 INTERGIS - A PROPOSAL OF AN ARCHITECTURE FOR THE INTEGRATION OF IDENTITY MANAGEMENT SYSTEMS

specified requirements in the program rule.

In positive case, the reply to the program will
contain the name of the module with value “1”
and in the negative case the reply to the
program will contain the name of the module
with value “0”.

g) The reply is returned to the Program module.
At this point, if a document had been directed
to the module Connection, the reply of this
foreign module is delivered to the Program
module. However, if the authentication was
local, after all the steps above, a reply with the
results of all actions is returned to the Program
module.

C- FUNCTIONING

For each company, there will be a server that makes
the integration between the data contained in IdM, with
the local programs and the remote integration servers.

The communication between the integration server
and the IdM will be made using secure protocol LDAP
over SSL - Security Socket Layer (Freier ez al., 1996). This
will grant the data confidentially between the integration
server and the data repository.

Beyond the confidentially, the use of LDAPS also
grants the authentication between the parts through
mutual confidence in the issuer by the certificate of the
LDAPS.

An integration server will only make connection
with IdMs, which is in its domain. The integration server
of company “Bravo” does not connect to the IdM of the
“Alfa” company.

When a local user wants to have access to a
program of the company, it also will use the infrastructure
of the integration server.

After meeting the information necessary to request
an authentication, the program writes a XML document,
signs it digitally and sends it for the integration server. In
the server, the digital signature is verified and the
document is processed. The digital signatures grant
content authenticity and the authentication of the
document sender.

After syntax checking in the Program module, the
Engine module will try to locate, amongst the integration
rules, one that is addressed to the user domain and to the
program specified in the XML on tag <program>.

When the rule is found, the Engine module, will
execute the authentication as described. The first query
will check the existence of the user. A query is requested
by the Engine module to the Data Source module, so that
specified login will be located. The query reply, if the login
exists, is the DN - Distinguished Name. But, if user does
not exist, the authentication process is aborted and the

Volume 17 « n° 2 « July/December 2006

Application module returns an error message to the
program that requested the authentication.

With the DN, the Engine module requests the
second query to authenticate. The requested query is a
connection to the base using the credentials provided in
by the Authentication XML document. This connection
is made by the Data Source module in the base. If the
connection is established, the user is authenticated and
the process continues in the next step. However, if it fails,
the error aborts the authentication process and the
Program module returns an error to the program that
requested the authentication.

The third and last step is the verification of
authorization. One more time the Engine module requests
a query to the Data Source module, that will use the
object as the base of the search and a filter LDAP as
validation. In case the query returns the user DN, the user
fulfills the conditions needed in the program filter and
after it the module will return a message of success in the
authorization. As a result, the user will gain access to the
program. Otherwise, if the last query does not return user
DN, Application module will inform that the user is
authenticated, but not authorized.

In the authentication of a foreign user that is
from another domain, the process has modifications.
The process to request login and password of the user
do not change in the program; however, the user
informs his login followed by “@” and the domain of
his original company.

The process at the Application module is identical
to the local process. When the request arrives at the
Engine module, Engine identifies that the informed domain
is different from the configured standard domain that
identifies the authentication of a remote user.

After a checking of syntax in the Program module,
the Engine module will try to locate, amongst the rules of
integration, one that is addressed to the domain of the
specified user and the program specified on tag
<program>.

When the integration rule is found, the Engine
module will redirect the XML document to Connection
module that knows foreign Integration Server
configuration, and it will send the request to the other
Integration Server.

In the Connection module of the foreign user’s
original company, the remote module receives, validates
the signature and directs it to be processed by the remote
Engine module. The processing of the request is identical
to the local process, exactly because, at this moment, the
authentication for that server is local.

The result of the process is directed from the remote
Engine module to the remote Connection that then
processes a reply XML document, similar to the XML

FABIO RAPHAEL SOBIECKI DE SALES, ADILSON EDUARDO GUELFI, VOLNYS BORGES BERNAL 83

Server

L pllcatlons;}

4TTI7

Figure 7. Local authentication.

document issued by the local Application module. If there
is a message of error or success, the reply provided by
remote server is returned to the local Connection module.
The local Connection, then, returns to the local Engine,
where it is redirected to the local Application module that,
finally, will send an answer to the program that originated
all the process.

4 Scenarios

In the study of these scenarios, we will present
local and remote authentications.

Figure 7 presents the flow of a company “A” user
authentication, authenticating a company “A’s” ERP
program and using the company “A’s” IdM. The flow
covers only one server of integration.

1.User request access to the program;

2.Program requests the credentials of access
through user and password;

3.Program generates a XML request, digital signs
and directs it to the integration server;

01 <xml>
02 <doctype name="authreqg">
03 <id>534</id>

04 <time>12/10/2006 08:45:34</time>
05 </doctype>

06 <program>ERP</program>

07 <user>jsilva</user>

08 <password>s3cur3#</password>

09 <module>Financial</module>

10 <module>Logistic</module>

11 <xml>

4. The Program module checks the signature,
validates the XML document and redirects to the Engine
module;

5.The Engine locates the integration rules and
verifies if the program “ERP” can authenticate in the
default domain,;

01 <xml>
02 <doctype name="channel">
03 <appl>ERP</appl>

04 </doctype>
05 <domain>

06 <name>a.com.br</name>

07 <source>idm-employee</source>

08 <requirements>user</requirements>

09 <requirements>password</requirements>
10 <sourceparam name="idm-employee">

11 <base>ou=sao, o=a</base>

12 <scope>one</scope>

13 </sourceparam>

14 <rule name="Sales" type="ldap">

15 groupmembership=Sales

16 </rule>

17 <rule name="Financial" type="ldap">
18 aclFinancial=true

19 </rule>

20 <rule name="Logistic" type="ldap">

21 & (groupmembership=Managers) (department=Shipping)
22 </rule>

23 </domain>
24 <domain>

25 <name>b.com.br</name>

26 <requirements>user</requirements>

27 <requirements>password</requirements>
28 </domainx>

29 <xml>

6. The module data source carries 3 queries in the
base: login for DN, authentication of the user and
authorization;

01 <xml>

02 <doctype name="source">

03 <source name="idm-employee">

04 <main/>

05 <type>ldap</type>

06 <host>1ldap.a.com.br</host>

07 <port>636</port>

08 <user>cn=adminint, ou=services, ou=sao, o=a</user>
09 <password>t1ck3t32@%</password>

10 </source>

11 </doctype>
12 <xml>

7. The result of the processing is returned by the
program module;

8.The Program module writes an XML document
reply, signs and returns to ERP program, granting or not
its access.

Scientia — Interdisciplinary Studies in Computer Science

84 INTERGIS - A PROPOSAL OF AN ARCHITECTURE FOR THE INTEGRATION OF IDENTITY MANAGEMENT SYSTEMS

01 <xml>

02 <doctype name="authrep">

03 <id>534</id>

04 <time>12/10/2006 08:45:42</time>
05 </doctype>

06 <program>ERP</program>

07 <messagecode>200</messagecode>

08 <message>User Authenticated</message>
09 <module name="Financial" value="1"/>
10 <module name="Logistic" value="0"/>
11 <xml>

Figure 8 demonstrates the flow of an authentication
by the “B” company user, who is authenticating in an
ERP program of “A” company and using the company
“B” IdM. The flow covers two servers of integration now.

1.A user from “B” company requests access to the
program;

2. The Program requests the credentials of access
through user and password;

3.The Program generates a XML, digital signs and
directs to the integration server;

01 <xml>
02 <doctype name="authreqg">
03 <id>535</1id>

04 <time>12/10/2006 08:47:34</time>
05 </doctype>

06 <program>ERP</program>

07 <user>msouza@b.com.br</user>

08 <password>s0ftt3ch</password>

09 <module>Financial</module>

10 <xml>

Applications

4.The Program module checks the signature,
validates the XML and redirect to the Engine module;

5.The Engine locates the integration rules and
verifies if the program “ERP” can be authenticated at “B”
company’s domain and then directs to the Connection
module;

01 <xml>
02 <doctype name="channel">
03 <appl>ERP</appl>

04 </doctype>
05 <domain>

06 <name>a.com.br</name>

07 <source>idm-employee</source>

08 <requirements>user</requirements>

09 <requirements>password</requirements>
10 <sourceparam name="idm-employee">

11 <base>ou=sao, o=a</base>

12 <scope>one</scope>

13 </sourceparam>

14 <rule name="Comercial" type="ldap">
15 groupmembership=Sales

16 </rule>

17 <rule name="Financeiro" type="ldap">
18 aclFinanceiro=true

19 </rule>

20 <rule name="Logistica" type="ldap">
21 & (groupmembership=Managers) (department=Expedicao)
22 </rule>

23 </domain>
24 <domain>

25 <name>b.com.br</name>
26 <requirements>user</requirements>
27 <requirements>password</requirements>

28 </domain>
29 <xml>

CImEEITy
Engine I»

A Company
local

Figure 8. Remote authentication.

Volume 17 « n° 2 « July/December 2006

FABIO RAPHAEL SOBIECKI DE SALES, ADILSON EDUARDO GUELFI, VOLNYS BORGES BERNAL 85

6. The Connection module delivers the XML
document, containing the original user request and sends it
to the remote Connection module through a secure channel,

7. The remote Connection module validates the
rule of authorization of the program in company “B”, with
the rule exported for the Connection module of the “A”
Company and directs it to the remote Engine module;

01 <xml>

02 <doctype name="exchange">

03 <domain>b.com.br</domain>

04 <host>mickey.b.com.br</host>

05 <port>5110</port>

06 <trustedroot>bcert.der</trustedroot>

07 </doctype>

08 <program name="ERP">

09 <rule name="Financial" type="ldap">
10 groupmembership=Auditors

11 </rule>

12 </program>

13 <xml>

8. The Remote Engine module locates the
integration rules and verifies if the program “ERP” can
authenticate in the default domain;

01 <xml>

02 <doctype name="channel">
03 <appl>ERP</appl>

04 </doctype>

05 <domain>

06 <name>b.com.br</name>

07 <source>svwactdir</source>

08 <requirements>user</requirements>

09 <requirements>password</requirements>
10 <sourceparam name="svwactdir">

11 <base>cn=Users,dc=b,dc=com, dc=br</base>
12 <scopex>sub</scope>

13 </sourceparam>

14 <rule name="Financial" type="ldap">
15 groupmembership=Auditors

16 </rule>

17 <xml>

9. The Data Source module carries the 3 queries in
the base: login for dn, authentication of the user and
authorization;

01 <xml>

02 <doctype name="source">

03 <source name="svwactdir">

04 <main/>

05 <type>ldap</type>

06 <host>svwactdir.b.com.br</host>

07 <port>389</port>

08 <user>cn=administrator, ou=Users, dc=b,dc=com, dc=br</user>
09 <password>do031gbglzp3%3g0692@d</password>
10 </source>

11 </doctype>

12 <xml>

10. The result of the processing is returned to the remote
Connection module, that returns it to the local Connection
module through the established secure channel in step 6;

01 <xml>

02 <doctype name="authrep">

03 <id>535</id>

04 <time>12/10/2006 08:45:43</time>

05 </doctype>

06 <program>ERP</program>

07 <messagecode>200</messagecode>

08 <message>User Authenticated</message>
09 <module name="Financial" value="1"/>
10 <xml>

11. The local Connection module returns the
received reply from company “B’s” integration server, to
the local Engine module;

12. The local Engine returns the reply to the
Program local module;

13. Finally, the local Program module sends a XML
reply to the ERP, with the result of the queries made by
the user in company “B”, and this grants or not access for
the “B” to the program ERP of the company “A”.

5 Integration Server Features

A - ADMINISTRATION

Each server will need some administrative actions
for its functioning and configuration. For that, an
administrative web interface will be developed and can
have access through protocol HTTPS.

During the architecture introduction, the administrator
will configure the initial parameters of LDAP and will specify
a service account that will be used to the queries.

For the first access to the administration interface,
the administrator will authenticate with the user and the
password of this service account, later through the option
“User Management”, he will be able to nominate other
administrators of the server.

The data sources for LDAP authentication will be
configured in the option “Data Sources”. It will already
access the data in the main connection, which was
configured during the installation of the server. Other user
data sources can be configured. These sources of data
could be LDAP bases as: OpenLDAP, Novell eDirectory,
Red Hat Directory, Fedora Directory, Sun Java System
Directory or Microsoft Activate Directory. Relational
Databases can be configured with the user table as:
Oracle, MySQL, DB2, PostgreSQL or others.

However, it is mandatory the main base to be LDAP,
therefore, it will keep in this base other structural
information of the architecture.

In the “Program” option, programs will be
configured to consume the data supplied by the server
through the Data Sources.

Any program or hardware that can be connected
through HTTPS protocol by net can send XML documents
to the server and, if it is in the list of allowed programs, it
will receive a document as a reply. In case a request arrives
at the server, it will try to match with some rule. In case it
does not match it, an XML document error will be returned.

The integration rules will be configured in the
“Engine” option. The administrator will configure the rules
of integration with the previously configured Data Source.

Finally, in the option of “Records & Logs”, the
administrator will configure the options to send and store logs.

Scientia — Interdisciplinary Studies in Computer Science

86 INTERGIS - A PROPOSAL OF AN ARCHITECTURE FOR THE INTEGRATION OF IDENTITY MANAGEMENT SYSTEMS

B - LOGS REGISTER

To track and scan, the server will be able to register
logs of executed actions. Events as authentication, access
to administrative interface, error messages of connected
programs and other system faults will be recorded.

There will be 3 types of messages: “Alert”, “Critic”
and “Security”.

Messages classified as “Alert” are simple
messages, only of the informative kind to the administrator,
such as: Authentication of one determined program or
Access to the administrative interface.

In the classification of “Critic”, selected messages
must have emergency actions of the administrator.
Messages as: Connection fails or Query fails.

The classified messages as being of “Security”
will contain related information about attacks against the
security. For example: Badly-formed Requests or
Successive Authentication Fails.

Logs could be sent to a Syslog server which will
be configured to receive the events. Beyond the Syslog,
the program will be capable to send the events to a
database. The goal is creating a report to analysis of these
data and generate systems alert by email, pager or SMS.

C—SECURITY ISSUES

In order to be an integrated architecture of access
for the programs that can contain confidential data, the
server can be a point of attacks.

To grant the security triad, some actions will have
to be analyzed.

Confidentiality - the communications between the
server and the data sources or programs need to be protected
by secure communication protocols as HTTPS or LDAPS.

Integrity — XML documents have digital signature
issued by the program and by the server. Certificates will
be issued for each program and a reliable root will be
known by hosts.

Auvailability - As the integration rules remains in the
main LDAP, the connection to the LDAP server can be
redundant, therefore, the LDAP supports base replication.
More than one server can execute the Engine, and a structure
of load balance by the hardware can be implemented.

As the server will be waiting for connections in a
specific port, badly-formed requests can be directed to
this service to try an unavailability of service. The server
will have to be capable to detect badly-formed requests
and discard them immediately.

6 Conclusions

The Identity Management is part of the
Information Security strategy. Because the access control

Volume 17 « n° 2 « July/December 2006

protect restricted information. We must be cautious on
how many products are associated to this service.

On the other way, the dynamism of companies
requires fast and reliable answers for the most different
situations that the company can go under.

One of these changes in companies is the
association, mergers or even the services of outsourcing.

In instants, an amount of new identities demand
access to the controlled resources of the company.
Moreover, the life cycle of this remote identity is extremely
variable.

For these reasons, this work was dedicated to
develop an architecture that allows, at the same time,
flexibility, compatibility, agility and security to the
integration between different systems of identity
management.

The proposal here achieved these goals, providing
architecture based on current and emergent technologies
with the focus on the security needed in the technology
information environment.

The architecture can be implemented in any type
or size of company, once that scalability and conditions
of physical support are observed.

Beyond this direct program in company integration,
this architecture can have other situations of applicability,
for example: an electronic commerce that would like to
authenticate, on line, the condition of one customer in
social insurance database at the identities database of
Federal Government. A second example is a future system
of electronic vote, where each vote machine can
authenticate and authorize voters in identity bases of
Electoral Superior Court.

For the future works, the described architecture
can serve as inspiration to an optimized and a more
efficient model.

Also, the installation of this architecture in a
programming language makes necessary that there be
compatibility with the specifications, similar to giving
validation to the concepts covered by this work.

Some others technologies of authentication and
authorization, like Kerberos, SAML, Liberty Alliance
Federation can be integrated with InterGIs to be compatible
with other systems.

The integration server could have a cache system
to store some integrated identities. At the first moment,
the identity is verified by normal process. When the
identity is valid, this data will be stored in a secure cache
in the integration server. The next query made to same
identity, it could be verified by the stored information in
the cache.

This is one suggestion for the purpose of this
architecture that needs to be planned and implemented in
a testing environment.

FABIO RAPHAEL SOBIECKI DE SALES, ADILSON EDUARDO GUELFI, VOLNYS BORGES BERNAL 87

References

BLUM, D. 2005. Concepts and Definitions: Identity and Privacy
Strategies. In-Depth. Research Overview. Burton Group, Version
2, p. 12.

CARMODY, S. 2001. Shibboleth overview and requirements.
Shibboleth ~ Working Group. Available at http://
shibboleth.internet2.edu. Accessed on 12/03/2006.

ELLISON, C.; FRANTZ, B.; LAMPSON, B.; RIVEST, R.L.;
THOMAS, B. and YLONEN, T. 1999. RFC2693 — SPKI
Certificate Theory. Internet Society. Available at http://
www.ietf.org/rfc/rfc2693.txt Accessed on 12/03/2006.

FREIER, A.O.; KARLTON, P. and KOCHER, P.C. 1996. The SSL
Protocol Version 3.0. Netscape Communication. Available at http:/
/wp.netscape.com/eng/ss13/draft302.txt Accessed on 12/03/2006.

HE, H. 2003. What Is Service-Oriented Architecture, XML.com.
Available at http://www.xml.com/pub/a/ws/2003/09/30/
soa.html. Accessed on 12/03/2006.

JONES, M.B. 2006. The Identity Metasystem: A User-Centric,
Inclusive Web Authentication Solution. /n: W3C WORKSHOP
ON TRANSPARENCY AND USABILITY OF WEB
AUTHENTICATION, New York City. Available at http://
www.w3.0rg/2005/Security/usability-ws/papers/28-jones-id-
metasystem/. Accessed on 12/03/2006.

LAMPSON, B. and RIVEST, R.L. 1996. A simple Distributed
Security Infrastructure. MIT — Massachussetts Institute of
Technology. Available at http://theory.lcs.mit.edu/~cis/
sdsi.html. Accessed on 12/03/2006.

SANTIN, A.O.; FRAGA, J.S.; MELLO, E.R. and SIQUEIRA, F.
2002. Um modelo de autorizacdo e autenticagdo baseado em
redes de confianga para sistemas distribuidos de larga escala. In:
SIMPOSIO DE SEGURANCA EM INFORMATICA, 6, Sio
José dos Campos, SP. Anais... Sao José dos Campos, CTA/ITA,
p. p-101-110.

SILVESTRE, B.O. and RODRIGUEZ, N. 2005. Autenticacao e Controle
de Acesso em Servigos de Diretérios Multi-institucionais. In:
SIMPOSIO BRASILEIRO DE REDES DE COMPUTADORES,
Fortaleza, CE, 23. Available at http://www.sbrc2005.ufc.br/
_includes/aceitos.php. Accessed on 05/15/2007.

W3C 2006a. Web Services Activity Statement. World Wide Web
Consortium. Available at http://www.w3c.org/2002/ws/Activity.
Accessed on 12/03/2006.

W3C 2006b. Extensible Markup Language. World Wide Web
Consortium. Available at http://www.w3c.org/XML. Accessed
on 12/03/2006.

WAHL, M.; HOWES, T. and KILLE, S. 1997. RFC2251
Lightweight Directory Program Protocol (v3). Internet Society.
Available at http://www.ietf.org/rfc/rfc2251.txt

Scientia — Interdisciplinary Studies in Computer Science

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /All
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.2
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000500044004600206587686353ef901a8fc7684c976262535370673a548c002000700072006f006f00660065007200208fdb884c9ad88d2891cf62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef653ef5728684c9762537088686a5f548c002000700072006f006f00660065007200204e0a73725f979ad854c18cea7684521753706548679c300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002000740069006c0020006b00760061006c00690074006500740073007500640073006b007200690076006e0069006e006700200065006c006c006500720020006b006f007200720065006b007400750072006c00e60073006e0069006e0067002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f00630068007700650072007400690067006500200044007200750063006b006500200061007500660020004400650073006b0074006f0070002d0044007200750063006b00650072006e00200075006e0064002000500072006f006f0066002d00470065007200e400740065006e002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f0062006500200050004400460020007000610072006100200063006f006e00730065006700750069007200200069006d0070007200650073006900f3006e002000640065002000630061006c006900640061006400200065006e00200069006d0070007200650073006f0072006100730020006400650020006500730063007200690074006f00720069006f00200079002000680065007200720061006d00690065006e00740061007300200064006500200063006f00720072006500630063006900f3006e002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f007500720020006400650073002000e90070007200650075007600650073002000650074002000640065007300200069006d007000720065007300730069006f006e00730020006400650020006800610075007400650020007100750061006c0069007400e90020007300750072002000640065007300200069006d007000720069006d0061006e0074006500730020006400650020006200750072006500610075002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f006200650020005000440046002000700065007200200075006e00610020007300740061006d007000610020006400690020007100750061006c0069007400e00020007300750020007300740061006d00700061006e0074006900200065002000700072006f006f0066006500720020006400650073006b0074006f0070002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea51fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e30593002537052376642306e753b8cea3092670059279650306b4fdd306430533068304c3067304d307e3059300230c730b930af30c830c330d730d730ea30f330bf3067306e53705237307e305f306f30d730eb30fc30d57528306b9069305730663044307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020b370c2a4d06cd0d10020d504b9b0d1300020bc0f0020ad50c815ae30c5d0c11c0020ace0d488c9c8b85c0020c778c1c4d560002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken voor kwaliteitsafdrukken op desktopprinters en proofers. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200066006f00720020007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c00690074006500740020007000e500200062006f007200640073006b0072006900760065007200200065006c006c00650072002000700072006f006f006600650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020007000610072006100200069006d0070007200650073007300f5006500730020006400650020007100750061006c0069006400610064006500200065006d00200069006d00700072006500730073006f0072006100730020006400650073006b0074006f00700020006500200064006900730070006f00730069007400690076006f0073002000640065002000700072006f00760061002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a00610020006c0061006100640075006b006100730074006100200074007900f6007000f60079007400e400740075006c006f0073007400750073007400610020006a00610020007600650064006f007300740075007300740061002000760061007200740065006e002e00200020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740020006600f600720020006b00760061006c00690074006500740073007500740073006b0072006900660074006500720020007000e5002000760061006e006c00690067006100200073006b0072006900760061007200650020006f006300680020006600f600720020006b006f007200720065006b007400750072002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents for quality printing on desktop printers and proofers. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /NoConversion
 /DestinationProfileName ()
 /DestinationProfileSelector /NA
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure true
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles true
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /NA
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /LeaveUntagged
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

